Enviropedia
Climate Change
Global Warming
Ozone
Air Pollution
Weather & Climate
Sustainability
Kids
INFORMATION
Climate System
Climate Change
Empirical Study
Climate Models
Palaeoclimates
Global Warming
Introduction
Greenhouse Effect
Enhanced G-Effect
Greenhouse Gases
 - Carbon Dioxide
   - Sources
   - Sinks
   - Carbon Cycle
   - Concentrations
   - Equilibrium
 - Methane
   - Sources
   - Sinks
   - Concentrations
 - Nitrous Oxide
   - Sources
   - Sinks
   - Concentrations
 - Halocarbons
   - Sources
   - Sinks
   - Concentrations
 - Ozone
 - Other Trace Gases
 - Adjustment Time
 - Summary
Greenhouse Forcing
 - Forcing Factors
 - GWPs
 - ΔF-ΔC Relationships
 - 1765 to 1990
 - Ozone
Aerosols
 - Aerosols
 - Radiative Forcing
   - Direct
   - Indirect
 - Total Forcing
Climate Variations
 - Surface Temperature
 - Precipitation
 - Other Variations
   - Stratosphere
   - Cryosphere
   - Circulation
   - Cloudiness
Detection
 - Modelling
 - Attribution
   - Latitudes
   - Stratosphere
   - Precipitation
   - Sea Level Rise
   - Fingerprints
 - When?
Future Climate
 - GCM Simulations
 - Feedbacks
   - Water Vapour
   - Clouds
   - Ice Albedo
   - Greenhouse Gases
 - 21st Century
Impacts
 - Agriculture
 - Forestry
 - Ecosystems
 - Water Resources
 - Oceans & Coasts
 - Humans & Health
Responses
 - Stabilising
 - FCCC
 - Kyoto Protocol
 - UK Programme
   - Energy Demand
   - Energy Supply
 - Evaluation
Conclusion
LINKS
Navigate

4.4.1. Energy Balance Models

Energy balance models (EBMs) simulate the two most fundamental processes governing the state of the climate:

a) the global radiation balance (i.e. between incoming solar and outgoing terrestrial radiation) (see section 1.2.4), and;

b) the latitudinal (equator-to-pole) energy transfer (see section 1.2.5).

EBMs are usually 0-D or 1-D in form. In 0-D EBMs, the Earth is considered as a single point in space, and in this case only the first process listed above is modelled. In 1-D models, the dimension included is latitude. Temperature for each latitude band is calculated using the appropriate latitudinal value for the various climatic parameters (e.g. albedo, energy flux etc.). Latitudinal energy transfer is usually estimated from a linear empirical relationship based on the difference between the latitudinal temperature and the global average temperature. Other factors that may be included in the model equation are the time-dependent energy storage and the energy flux into the deep ocean.