Enviropedia
Climate Change
Global Warming
Ozone
Air Pollution
Weather & Climate
Sustainability
Kids
INFORMATION
Climate System
Climate Change
Empirical Study
Climate Models
Palaeoclimates
Global Warming
Introduction
Greenhouse Effect
Enhanced G-Effect
Greenhouse Gases
 - Carbon Dioxide
   - Sources
   - Sinks
   - Carbon Cycle
   - Concentrations
   - Equilibrium
 - Methane
   - Sources
   - Sinks
   - Concentrations
 - Nitrous Oxide
   - Sources
   - Sinks
   - Concentrations
 - Halocarbons
   - Sources
   - Sinks
   - Concentrations
 - Ozone
 - Other Trace Gases
 - Adjustment Time
 - Summary
Greenhouse Forcing
 - Forcing Factors
 - GWPs
 - ΔF-ΔC Relationships
 - 1765 to 1990
 - Ozone
Aerosols
 - Aerosols
 - Radiative Forcing
   - Direct
   - Indirect
 - Total Forcing
Climate Variations
 - Surface Temperature
 - Precipitation
 - Other Variations
   - Stratosphere
   - Cryosphere
   - Circulation
   - Cloudiness
Detection
 - Modelling
 - Attribution
   - Latitudes
   - Stratosphere
   - Precipitation
   - Sea Level Rise
   - Fingerprints
 - When?
Future Climate
 - GCM Simulations
 - Feedbacks
   - Water Vapour
   - Clouds
   - Ice Albedo
   - Greenhouse Gases
 - 21st Century
Impacts
 - Agriculture
 - Forestry
 - Ecosystems
 - Water Resources
 - Oceans & Coasts
 - Humans & Health
Responses
 - Stabilising
 - FCCC
 - Kyoto Protocol
 - UK Programme
   - Energy Demand
   - Energy Supply
 - Evaluation
Conclusion
LINKS
Navigate

Introduction

1. The Climate System

1.1. Introduction
1.2. The Atmosphere
1.2.1. Composition of the Atmosphere
1.2.1.1. Carbon dioxide
1.2.1.2. Methane
1.2.1.3. Nitrous oxide
1.2.1.4. Ozone
1.2.1.5. Chlorofluorocarbons
1.2.1.6. Other Trace Gases
1.2.1.7. Aerosols
1.2.2. Vertical Structure of the Atmosphere
1.2.3. Radiation Laws
1.2.4. Energy Budget of the Atmosphere
1.2.5. Horizontal Energy Transfers
1.2.6. Summary
1.3. Other Components of the Climate System
1.3.1. Oceans
1.3.2. Cryosphere
1.3.3. Biosphere
1.3.4. Geosphere
1.4. Conclusion

2. Causes of Climate Change

2.1. Introduction
2.2. Non-Radiative Forcing
2.3. Radiative Forcing
2.4. Time Scale of Climate Change
2.5. External Forcing Mechanisms
2.5.1. Galactic Variations
2.5.2. Orbital Variations
2.5.2.1. Obliquity
2.5.2.2. Eccentricity
2.5.2.3. Precession
2.5.2.4. Milankovitch Cycles and Ice Ages
2.5.3. Solar Variations
2.6. Internal Forcing Mechanisms
2.6.1. Orogeny
2.6.2. Epeirogeny
2.6.3. Volcanic Activity
2.6.4. Ocean Circulation
2.6.5. Variations in Atmospheric Composition
2.7. Climatic Feedback
2.8. Climate Sensitivity
2.9. Conclusion

3. Empirical Study of the Climate

3.1. Introduction
3.2. Climate Construction from Instrumental Data
3.2.1. Measurement of Climate Elements
3.2.1.1. Measurement of Temperature
3.2.1.2. Measurement of Rainfall
3.2.1.3. Measurement of Humidity
3.2.1.4. Measurement of Wind
3.2.2. Homogeneity
3.2.3. Statistical Analysis of Instrumental Records
3.3. Palaeoclimate Reconstruction from Proxy Data
3.3.1. Historical Records
3.3.2. Ice Cores
3.3.2.1. Stable Isotope Analysis
3.3.2.2. Physical and Chemical Characteristics of Ice Cores
3.3.2.3. Dating Ice Cores
3.3.3. Dendroclimatology
3.3.4. Ocean Sediments
3.3.4.1. Palaeoclimatic Reconstruction from Biogenic Material
3.3.4.2. Palaeoclimatic Reconstruction from Terrigenous Material
3.3.5. Terrestrial Sediments
3.3.5.1. Periglacial Features
3.3.5.2. Glacier Fluctuations
3.3.5.3. Lake-Level Fluctuations
3.3.6. Pollen Analysis
3.3.7. Sedimentary Rocks
3.4. Conclusion

4. Climate Modelling

4.1. Introduction
4.2. Simplifying the Climate System
4.3. Modelling the Climatic Response
4.4. Climate Models
4.4.1. Energy Balance Models
4.4.2. Radiative-Convective Models
4.4.3. Statistical-Dynamical Models
4.4.4. General Circulation Models
4.5. Confidence and Validation
4.6. Conclusion

5. Palaeo-Climate Change

5.1. Introduction
5.2. Pre-Quaternary Climates
5.2.1. Precambrian Climates
5.2.2. Phanerozoic Climates
5.2.2.1. Palaeozoic Climates
5.2.2.2. Mesozoic Climates
5.2.2.3. Cenozoic Climates
5.3. Quaternary Climates
5.3.1. Pleistocene Glacials and Interglacials
5.3.1.1. Orbital Variations
5.3.1.2. CO2 Feedbacks
5.3.1.3. Coupled Internally-Externally Driven Climate Change
5.3.2. Holocene Climates
5.3.2.1. Younger Dryas Cooling
5.3.2.2. Mid-Holocene Thermal Maximum
5.3.2.3. Late Holocene Neoglaciation
5.3.2.4. The Little Ice Age
5.3.2.5. Holocene Climate Forcing Mechanisms
5.4. Conclusion

6. Contemporary Climate Change

6.1. Introduction
6.2. Greenhouse Effect
6.3. Enhanced Greenhouse Effect
6.4. Sources, Sinks and Concentrations of Greenhouse Gases
6.4.1. Carbon Dioxide and the Carbon Cycle
6.4.1.1. Sources of Atmospheric Carbon Dioxide
6.4.1.2. Sinks of Atmospheric Carbon Dioxide
6.4.1.3. Carbon Cycle Disequilibrium
6.4.1.4. Increases in Atmospheric Carbon Dioxide Concentration
6.4.1.5. Restoring Carbon Cycle Equilibrium
6.4.2. Methane
6.4.2.1. Sources of Atmospheric Methane
6.4.2.2. Sinks of Atmospheric Methane
6.4.2.3. Increases in Atmospheric Methane Concentration
6.4.3. Nitrous Oxide
6.4.3.1. Sources of Atmospheric Nitrous Oxide
6.4.3.2. Sinks of Atmospheric Nitrous Oxide
6.4.3.3. Increases in Atmospheric Nitrous Oxide Concentration
6.4.4. Halocarbons
6.4.4.1. Sources of Atmospheric Halocarbons
6.4.4.2. Sinks of Atmospheric Halocarbons
6.4.4.3. Increases in Atmospheric Halocarbons Concentration
6.4.5. Ozone
6.4.6. Other Trace Gases
6.4.7. Atmospheric Adjustment Time of Greenhouse Gases
6.4.8. Summary
6.5. Radiative Forcing of Greenhouse Gases
6.5.1. Factors Affecting Greenhouse Radiative Forcing
6.5.2. Greenhouse Warming Potentials
6.5.3. ΔF-ΔC Relationships
6.5.4. Greenhouse Gas Radiative Forcing 1765 to 1990
6.5.5. Radiative Forcing of Ozone
6.6. Aerosols
6.6.1. Sources and Sinks of Aerosols
6.6.2. Radiative Forcing by Aerosols
6.6.2.1. Direct Radiative Forcing
6.6.2.2. Indirect Radiative Forcing
6.6.3. Total Anthropogenic Radiative Forcing: Greenhouse Gases and Aerosols
6.7. Observed Climate Variations
6.7.1. Surface Temperature Variations
6.7.2. Precipitation Variations
6.7.3. Other Climatic Variations
6.7.3.1. Tropospheric and Stratospheric Temperature Variations
6.7.3.2. Variations in the Cryosphere
6.7.3.3. Variations in Atmospheric Circulation
6.7.3.4. Cloudiness
6.8. Detection of Anthropogenic Global Warming
6.8.1. Greenhouse Modelling versus Observation
6.8.2. Attribution and the Fingerprint Method
6.8.2.1. Latitudinal Surface Temperatures
6.8.2.2. Tropospheric Warming and Stratospheric Cooling
6.8.2.3. Global-mean Precipitation Increase
6.8.2.4. Sea Level Rise
6.8.2.5. Multivariate Fingerprints
6.8.3. When Will Attribution Occur?
6.9. Future Climate Change
6.9.1. GCM Climate Simulations
6.9.2. Greenhouse Feedbacks
6.9.2.1. Water Vapour Feedback
6.9.2.2. Cloud Feedback
6.9.2.3. Ice Albedo Feedback
6.9.2.4. Greenhouse Gas Feedbacks
6.9.3. Climate in the 21st Century
6.10. Impacts of Future Climate Change
6.10.1. Agriculture
6.10.2. Forestry
6.10.3. Natural Terrestrial Ecosystems
6.10.4. Hydrology and Water Resources
6.10.5. Oceans and Coastal Zones
6.10.6. Human Settlements and Health
6.11. Response to Anthropogenic Climate Change
6.11.1. Stabilising Greenhouse Gas Concentrations
6.11.2. Framework Convention on Climate Change
6.11.3. The Kyoto Protocol
6.11.4. UK Programme
6.11.4.1. Energy Demand
6.11.4.2. Energy Supply
6.11.5. Evaluation of the FCCC, the Kyoto Protocol and UK Programme
6.12. Conclusion

Epilogue

Appendix

References